
Code,�ality, and Process Metrics in
Graduated and Retired ASFI Projects

S, tefan Stănciulescu
sstanciulescu@ucdavis.edu

University of California, Davis
USA

Likang Yin
lkyin@ucdavis.edu

University of California, Davis
USA

Vladimir Filkov
vfilkov@ucdavis.edu

University of California, Davis
USA

ABSTRACT

Recent work on open source sustainability shows that successful

trajectories of projects in the Apache Software Foundation Incuba-

tor (ASFI) can be predicted early on, using a set of socio-technical

measures. Because OSS projects are socio-technical systems cen-

tered around code artifacts, we hypothesize that sustainable projects

may exhibit different code and process patterns than unsustainable

ones, and that those patterns can grow more apparent as projects

evolve over time. Here we studied the code and coding processes

of over 200 ASFI projects, and found that ASFI graduated projects

have different patterns of code quality and complexity than retired

ones. Likewise for the coding processes – e.g., feature commits or

bug-fixing commits are correlated with project graduation success.

We find that minor contributors and major contributors (who con-

tribute <5%, respectively >=95% commits) associate with graduation

outcomes, implying that having also developers who contribute

fewer commits are important for a project’s success.

This study provides evidence that OSS projects, especially nascent

ones, can benefit from introspection and instrumentation using

multidimensional modeling of the whole system, including code,

processes, and code quality measures, and how they are intercon-

nected over time.
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1 INTRODUCTION

Open Source Software (OSS) project sustainability is of key im-

portance to our digital society infrastructure. Successful and sus-

tainable OSS dominates the Internet (e.g., Apache, Linux, Android,
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Mozilla, Chromium, and LibreOffice), and is reportedly used in 98%

of enterprises1. The blockbuster projects notwithstanding, for many

other OSS projects, especially nascent ones, becoming sustainable

and later remaining on a trajectory to long-term sustainability is

an ongoing issue.

The consequences of a popular OSS project getting off that tra-

jectory can be disastrous, as recent worldwide cybersecurity in-

cidents like log4j have demonstrated [28, 44]. In response to such

incidents in software security, a meeting in January 2022 at the

US White House,2 between government and private sector stake-

holders, resulted in a statement recognizing OSS maintainability

and sustainability as issues of national importance, and calling to

action to identify "sustainable mechanisms" to maintain the most

important OSS projects. But what are the characteristics of sustain-

able OSS projects, and how can they be leveraged into sustainable

mechanisms for project maintenance?

We know that in spite of concentrated programmer labor, many

open source projects fail and are abandoned. Coelho and Valente

have studied over 100 GitHub projects and identified different rea-

sons for OSS failure, including low number of developers involved,

low engagement, and other reasons. [8]. To increase their visibil-

ity and chances of success many projects join foundations, like

the Apache Software Foundation (ASF), which provide common

standards and guidance in exchange for higher community unifor-

mity. The popularity and high standards of foundation supported

projects can contribute to their continued sustainability, by attract-

ing a steady supply of programmer effort. ASF in particular serves

as an example that has been successfully churning out popular

and high quality projects for years. Its incubator, and the Apache

Way,3 has served many nascent projects, graduating those that

demonstrated a track record toward sustainability, and retiring

others.

Moreover, OSS projects come in different shapes and sizes. This

diversity is there from the beginning, when nascent projects are

initiated, and continues throughout their life trajectory, and for

some, into their eventual sustainable regime. That every project

may have a different story and trajectory is in line with contingency

theory and organizational management studies [14]. Recognizing

this, modern software engineering research is doing away with the

"rules of thumb", and the one-size-fits-all solutions and replacing

them with deeper and more meaningful bespoke solution, where

the context and the ecosystem environment are significant deter-

minants of project sustainability [21, 52]. These research efforts

1https://www.pcmag.com/archive/survey-98-percent-of-companies-use-open-
source-29-percent-contribute-back-253661
2https://www.whitehouse.gov/briefing-room/statements-releases/2022/01/13/
readout-of-white-house-meeting-on-software-security/
3https://www.apache.org/theapacheway/
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have benefited from the availability of large-scale repositories of

project traces and developer behaviors. The most promising of

them have combined multiple different types of data, including

traces and communication activities, surveys and developer inter-

views, and used modeling at both software engineering and social

and governance levels [51, 52]. Recent work on open source sus-

tainability focused both on technical factors [36, 37, 41] and social

factors [17, 47, 49, 52], and has demonstrated the benefits of using

socio-technical networks to forecast project graduation success in

the Apache Software Foundation Incubator (ASFI) [21, 52]. Those

studies found that different patterns of social interactions and differ-

ent socio-technical behavior mediate differential success outcomes,

in particular with respect to sustainability metrics.

Where the evidence is scant, however, is where we find the next

natural research direction: to connect sustainability to the way the

software artifacts are created, especially the code. It stands to reason

that because code is the product of coding, a social process, and the

process of coding is interleaved with activities of the socio-technical

system representing the project, a connection, even if indirect,

exists among them. In fact, since the initial postulation of Conway’s

law [9], it has been amply established that the software project socio-

technical structure in commercial projects is associated with the

organization [33] and quality [6] of the software artifacts created.

A Motivating Example. We take a look at two different yet

similar projects from ASF. Apache Celix is a framework to develop

modular software applications. It graduated from the incubator after

almost four years, while having only four code contributors and a

bit over 300 commits. Its approach was to have a consistent long-

term activity, without high intensity development periods. On the

other spectrum is SpamAssassin, a well-known anti-spam platform

developed for more than 20 years. SpamAssassin was highly active

during its incubation period, had many contributors, and averaged

over 150 commits per month. It graduated much faster from the

incubator, likely also due to its previous well established codebase

and community. Both projects were and still are successful, both

graduated from the incubator, but had very different trajectories

both at code level and at process level.

Our contributions. Guided by the above, and the prior work

showing that the notion of OSS sustainability, in the ASF Incubator

sense of a trajectory leading to self-reliance has strong connections

to a project’s socio-technical structure, we hypothesize that:

Code, the coding process, and project quality (e.g., graduation

in ASFI) are associated with project sustainability in a way that

can be quantitatively measured.

The following questions, then, arise naturally: is the code and the

development process in sustainable projects perceptibly different

than in those that are not sustainable? Is the code quality in the

former any different than in the latter? To effectively answer these

questions one would need guiding theories connecting organiza-

tional behavior to outcomes, and data of code, process, and quality,

together with data of project sustainability outcomes.

Here, we analyze a dataset of source code and digital traces from

the repositories of 200+ ASFI projects, that have been judged to be

on the path to sustainability, i.e., retired or not. We extracted soft-

ware metrics for code, process, and quality, and studied the metric-

space differences between graduated and retired ASFI projects at

individual metric level, metrics over time, and in models of sustain-

ability. We found the following:

• Graduated and retired projects are different in their code

(graduated have less code per author, and less directories

per author), processes (graduated commit more and delete

more), and quality (graduated have more complex code and

more test code);

• Graduated and retired projects follow different trajectories

once they enter the incubator. Some projects are somewhat

better equipped to graduate fast, while others strive for a

more constant but less commit-heavy activity. Finally, retired

projects are more likely to have a higher burden per contribu-

tor due to having fewer contributors, an increasing codebase

size, and being less likely to attract new contributors;

• An increase in the following metrics increases the odds of

graduation: lines of code, major and minor contributors,

features commits, corrective commits, medium complexity

(11-25 McCabe) functions, and very large functions. On the

flip side, the increase in the following metrics decreases the

odds: top level directories, avg. files modified per commit,

very large file sizes, and code duplication percentage.

This paper is a first step showing that it is possible to associate

sustainability with code, quality and process metrics. Our motiva-

tion goes beyond ASFI as many more projects fail outside of ASFI,

therefore, maintaining projects with large code bases may be more

pertinent to them. Our replication package is available on Zenodo.4

2 BACKGROUND AND THEORY

In this section, we summarize the underlying mechanism of the

Apache Software Foundation Incubator, the related work on OSS

sustainability, and the concepts on code complexity and quality

measures. We also introduce the relevant contingency theory.

2.1 Apache Software Foundation Incubator

Apache Software Foundation Incubator (ASFI),5 is a project incuba-

tor that provides a deterministic path for in-the-wild OSS projects

to attract highly skilled developers, regulate working behaviors,

and further joining Apache community. During the incubation,

the projects’ long-term goal is to become self-sustainable, i.e., the

project’s community can self-govern itself to sustain its activity and

productivity over time. To help incubating projects achieve such

level of sustainability, ASF, different from most OSS foundations,

provides each incubating project with in-depth mentorship from

senior ASF committers. The incubation process often takes several

months, and when the project’s community is ready for exiting the

incubator, all contributors have the obligations to vote for either

graduation and retirement; if the decision from the community

is positive, then the ASF committee will additionally evaluate the

projects’ progress on contributor diversity, attractiveness to new

contributors, and community building. If all goes well, the project

will be graduated, otherwise retired. There is a tenet in Apache

4https://zenodo.org/record/6374071
5https://incubator.apache.org/
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Community, and that is ‘Community Over Code’. The belief is that

if good care is taken of the community, good code will emerge

from it. Based on such belief, projects in ASFI are encouraged to

build a diverse and meritocratic-based community, though there is

little explicit emphasis on code quality or new features to be devel-

oped. Previous work has found that there are strong relationships

between code quality and project’s progress [1, 48].

2.2 OSS Success & Sustainability vis-a-vis Code

OSS success has been studied from various angles, though there

is still no universal agreement on the definition of success in OSS

projects [10, 25, 40]. Some researchers use metrics from the user’s

perspective to measure OSS success, e.g., project downloads, usage,

popularity, licenses [7, 31, 43]. Others use project-centered metrics,

e.g., the number of issues, commit frequency, active developers [25].

Coelho et al. surveyed 118 developers and found that projects

fail for several reasons [8]: low interest from developers, low code

maintainability, and newer projects overtaking the original projects.

Furthermore, they discover that failed projects are less likely to

follow best practices (e.g., provide contributing guidelines), and

failed projects are more similar to less popular projects. A codebase

with high complexity and many code dependencies requires more

efforts to maintain or to develop new features. Code complexity can

also increase due to low code ownership [6], developer turnover

or accepting external contributors’ code [16]. Sachs used develop-

ers’ comments to predict a project’s success [39] by analyzing the

interactions between individuals as a group, based on SYMLOG, a

body of social psychology theories [2]. They find that developers’

personas do not increase the accuracy of traditional metrics-based

methods for predicting a project’s success.

Code quality is an important non-functional requirement in

a project’s lifecycle. Nagappan et al. show that organizational

metrics fare better than traditional metrics in predicting faults

in OSS projects [33]. Other research has shown that code and pro-

cess metrics can be useful for detecting code smells [29], design

issues [20, 32], predicting defects [36] or finding vulnerabilities [42],

which can be useful in understanding a project’s evolution and

potential issues.

Although related, OSS sustainability and OSS success are two

different concepts. One project can be successful and not sustain-

able and the most recent log4j vulnerability [28] is a convincing

evidence: a well-known and widely used OSS project, but barely

maintained by a group of only four non-paid developers. Xia et

al. used GitHub related metrics (pull requests, issues, etc) to pre-

dict the health of a project [50]. Compared to previous work, they

achieve high accuracy (<10% error rate) by tuning their models and

parameters, and show that they can accurately predict many health

indicators for the next 1, 3, 6, and 12 months. More recently, Yin et

al. showed that socio-technical factors (mostly social and techni-

cal networks) can be used to forecast the incubation sustainability

outcome for ASF incubator projects [52]. They find that a higher

number of nodes in the social networks is positively correlated with

graduation, whereas the number of nodes in the technical network

(code and developers’ coding behavior) is negatively associated

with graduation for minor projects. Ghapanchi studied project sus-

tainability over time based on two metrics: defect rate velocity and

feature enhancement rate [18]. They found that a higher bug-fixing

and feature enhancement rate, together with an increase in the

frequency of releases helps with long term sustainability. In com-

parison, we use comprehensive source code and coding process

analysis, allowing us to be broader in our analysis by including

code quality metrics. Izquierdo et al. studied how OSS projects

evolve in the Eclipse incubator [19]. They use product and code

related metrics to gauge their maturity. They find that modeling

projects that went through the incubator remain stable throughout

their lifecycle, indicating that they do not grow and are not able

to attract new contributors. As the end result of OSS software is

producing useful software, we expect that project sustainability is

associated with its code characteristics. However, to the best of our

knowledge, there is no study articulating the association between

project sustainability and code, process, and quality metrics.

2.3 Contingency Theory

ASFI projects, regardless of size, naturally form an organization

with internal rules, special regulations, and exclusive person power.

Structural contingency theory argues that organizations cannot be

fully effective without the necessary structural support [14]. More-

over, there is no single organizational structure that is best fitted for

every organization [46]. Thus, to an organization, the most effective

structure is contingent upon its internal and external context. Ac-

cording to Ruekert et. al. [38], organizational performance is a mix

of many factors, including: structure, people, technology, strategy

and culture. Organizations with better fit will achieve higher levels

of performance. In a nutshell, the structural contingency theory

claims that ‘one size does not fit all’, and that effective performance

depends on many factors [53]. In the specific case of ASFI projects,

the context of a project is multi-dimensional, including commu-

nications among contributors, seniority of the contributors, and

programming languages being used to build the project. Therefore,

it is likely that the association between code quality and sustain-

ability is contingent upon those context variables.

3 RESEARCH QUESTIONS

In this paper we build on the previous work of Yin et al. [52] and

study metrics complementary to their socio-technical ones. Our

focus is on code, process, and quality metrics to explore how writ-

ing code differs across ASFI projects. We hypothesize that retired

projects will exhibit different code complexity, process patterns,

and quality measures than graduated projects.

To have actionable insights into projects evolution and sustain-

ability, we consider them in a multi-dimensional space of our met-

rics. Understanding projects in such a space can give us a glimpse

into projects’ similarities and differences. Even if projects can be

similar in terms of codebase size (measured by the number of files)

and project size (measured by the number of active developers),

we expect that projects can differ in many ways: they may differ

in some process related aspects such as commit frequency, change

size, commit types, or the ability of attracting new contributors.

As predicted by the contingency theory, projects that successfully

progressed to be self-sustainable can go through different trajectory

under different context, and the same holds for retired projects that

they fail tomaintain sustainability due to various context. Therefore,
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Figure 1: Diagram showing the overall process for collecting

and analyzing the data. GLM: generalized linear regression

model, GLMM: generalized linear mixed-effects regression

model.

in such a complex multi-dimensional space, it is of importance to

demonstrate that there is sufficient variance to capture differences

and similarities between graduated projects and retired projects.

Thus, we ask:

RQ1: How do graduated and retired projects differ across our

code, process, and quality metrics? How are the metrics related

pairwise?

Next we turn to the temporal evolution of code, process, and

quality metrics. In a socio-technical system, feedback from one side

to another side takes time, especially in the circumstance of the

OSS project where people can work from different time zones. As

predicted by the contingency theory, the context of projects is of

importance to the organization, and the context is changing over

time. Therefore, code, process, and quality metrics’ evolution are

ideally to be studied temporally, which has been shown to perform

better than static metrics for predicting buggy code [36]. We ask:

RQ2: Are project trajectories of graduated and retired ASFI

projects different, along our code, process, and quality metrics?

Finally, we put the metrics together in a model of project grad-

uation. This question aims at exploring how well can our code

metrics associate with graduation from the incubator. We expect

the association between quality and sustainability can be identified

while controlling the context, thus we ask:

RQ3: What are the code, process, and quality metrics determi-

nants of whether a project is graduated versus retired? Are they

different for different programming languages?

4 DATA AND METHODS

In this section, we present the data collection process and the meth-

ods used in the study. Figure 1 presents the overall process.

4.1 Data Collection

We use the Apache Software Foundation podlings.xml file,6 for

a complete project list. It contains the project meta-data: project

name, incubation start and end date, and current status: graduated,

retired, or incubating. In total, the list contained 328 projects, out of

which, 236 have a Git repository on GitHub. The rest of the projects

are either SVN based or we were not able to locate their repository,

thus we exclude them. Finally, we clone all 236 Git repositories from

6URL to the podlings.xml file, downloaded June 2021

Apache’s GitHub organization.7 To collect the metrics from the Git

repositories and the mailing archives, we built a tool in Rust that

extracts data from repositories and downloads the mailing archives.

It then launches two other popular tools: tokei for extracting code

size metrics (files, blanks, lines, code, comments),8 and Sokrates

for calculating code quality metrics,9 and collects their output. For

each Git repository, we extract all commits and organize them into

monthly batches, called incubation months, based on their date. A

project’s incubation months are computed for each month from

their entry into the incubator (start date) and until they exit the

incubator (end date). If a project enters the incubator on 2006-10-15

and leaves the incubator on 2007-01-26, then the first incubation

month runs from 2006-10-15 until 2006-10-31, the second incubation

month runs from 2006-11-01 until 2006-11-30, and so on, until the

incubation month #4 which runs from 2007-01-01 until 2007-01-26.

Note that the first and last month may have less data. This allows

us to more easily align with the mailing archives which are stored

per calendar month.

We analyze the commits and extract process metrics for each

incubation month. To collect code metrics and code quality metrics,

we check out the repository at the last commit in that respective

incubation month and run the tools on the source code. Our Rust

tool computes the number of directories and root level directories

and extracts process metrics. We use tokei to extract code size

metrics. tokei’s output provides these metrics for each programming

language that it finds in the project, which allows us to also identify

and record the dominant programming language, i.e. the one that

has the most lines of code for each incubation month. To smooth the

data for smaller projects, if in a particular incubation month there

have been no commits, we reuse the code metrics values from the

previous month. If there has been no activity in the first incubation

month, we initialize all code and process metrics to 0.

For the classification of commits into change types, we use the

classifier from [15], and use the available generated model into

which we feed all the commits’ messages.10 The output is a list

with all commits and their classification label: feature, corrective

(fixing a bug), perfective (improving the code), non-functional (not

related to source code, e.g., documentation), or unknown (unsure

how to classify). We aggregate this as a sum of commits that have

the same label, for each incubation month and project.

To measure differences in their development process, we com-

pute for each incubation month a selection of several popular met-

rics [6, 19, 20, 36] from the project’s Git repository: number of com-

mits (excluding merge commits), average commits per developer,

number of commit active days, files added, files deleted, files modi-

fied, average number of files modified per commit, churn (added +

deleted lines), minor contributors (those that provide less than 5%

of commits), major contributors (those that provide 95% or more

of commits), new contributors (those that are first time commit

contributors), number of emails. For code metrics, we record the

number of files, lines, comments, blanks, and code (sloc), project

root level directories, and total number of directories.

7https://github.com/apache/abdera/
8https://github.com/XAMPPRocky/tokei
9https://www.sokrates.dev/
10https://github.com/gesteves91/fasttext-commit-classification
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For the emails, we download the dev mailing list archives for

each project and each incubation month.11 We focus on direct and

explicit communication between developers, therefore we count the

number of emails that are not JIRA-related emails, but we keep those

JIRA emails containing "Commented" in the subject. We ignore

other kind of JIRA emails (e.g., new issue, issue resolved, issue

assigned, etc.). We then extract a set of the developers’ emails that

sent or replied to an email (emails_dev), and the number of emails.

In a month with no emails, these metrics have a value of 0.

We use Sokrates to extract a number of metrics related to func-

tions, file sizes, McCabe complexity metrics at function level, code

duplication, and tests for each incubation month. While Sokrates

is not the most obvious choice, due to the fact that our dataset

exhibits a large number of programming languages, Sokrates is, to

the best of our knowledge, one of the few tools that can perform

such widespread source code analyses.

Our datasets, R scripts, and tools are available on Zenodo.12

4.2 Models

To analyze how graduation is associated with code, processes, and

code quality, we use Generalized Linear Regression (glm), and Gen-

eralized Mixed Effect Regression (glmer) models [4]. We chose the

latter to account for potential random effects introduced by dif-

ferent programming languages. We use R and the glmer function

from the lme4 package [5] to build the models. We first clean up the

data by removing a number of projects that have either no activity

or have incomplete data. From the total 236 Git repositories, we

eliminate 18 projects, resulting in 5365 observations across 184

graduated and 34 retired projects. We further remove the top 3% of

the outliers, resulting in 5245 observations.

For each incubation month we record the most prevalent pro-

gramming language in terms of code, and we use that as a random

effect. We build three regression models: a) the base model, b) the

base plus the process metrics, c) and the base plus process metrics

plus code quality metrics. The goal is to observe how the addition

of process and code quality metrics associate with predicting the

outcome - graduation or retirement. We build these three models

for two datasets: a glm model using only the Java-based projects

(which are the majority of the projects in the dataset), and a glmer

model that includes all the projects and uses the programming

language as a random effect. Recall that we are also interested in

understanding if programming languages play a role in predict-

ing the outcome. Next, we check for multicolinearity using the

Variance Influence Factor (VIF) using the check_multicolinearity

function from the performance R package [24]. Values below 5 indi-

cate that multicolinearity is not significant. We use two pseudo R2

values to report the model’s goodness of fit, using the r2_nakagawa

function from the same performance R package. The marginal R2

represents the variance solely described by the fixed effects, and

the conditional R2 represents the variance introduced by both fixed

and random effects in the model [34]. For creating the results table,

we use the SjPlot package [23] to create an HTML table, which we

then convert to Latex. The table shows the dependent variables

(Predictors), the Odds-Ratio (a value >1 has a positive effect, and <1

11http://mail-archives.apache.org/mod_mbox/
12https://zenodo.org/record/6374071

has a negative effect on graduation) and P values. The probability

definition of odds-ration is: ?A>1 =

>33B_A0C8>

1 + >33B_A0C8>
. For example,

an odds-ratio of 1.8 means the probability of success is 64% higher

with a unit increase in the selected variable.

4.3 Variables of Interest

For modeling, we use 23 independent variables representative of

software metrics split into three categories:

§1 code: lines of source code without comments (SLOC), number

of directories, number of top level directories.

§2 process: major contributors, minor contributors, new contribu-

tors - the number of authors that have not contributed before the

current incubation month, files added - the number of files added in

this incubation month, files deleted - the number of files deleted in

this incubation month, avg. files modified per commit - the average

number of files that were modified in a commit - it excludes files

that were added or deleted, only those that existed and were modi-

fied, active days - the number of days in an incubation month that

had at least one commit, number of emails, corrective - the number

of commits that fixed a bug or an issue, features - the number of

commits that added some feature, perfective - the number of com-

mits that enhanced (e.g., performance) the code, non functional -

the number of commits that were not code related, for example

adding documentation, and incubation month.

§3 quality: test code SLOC - this provides a proxy for how mature

a project is and its quality assurance, the ratio between test SLOC

and SLOC as a percentage - a small value represents a project with

few tests and weak code coverage, number of functions that have a

medium risk complexity (McCabe index between 11-25) - functions

should have a small cyclomatic complexity in order to be more

easily maintained and tested, number of functions that have a very

high risk complexity (McCabe index >50) - very complex functions

are indicators of bugs hotspots due to being very difficult to test,

number of very large files (>1000 SLOC) - large files have been shown

to be more likely to contain faults [35], require more efforts from

developers to understand and manage, and make the code less read-

able, number of very large functions (>100 SLOC) - large functions

require extra effort to maintain and make code less readable [30],

number of lines of code for the most complex function.

5 RESULTS

In this section, we present the analysis results and summarise our

findings for each research question.

5.1 RQ
1
: How do graduated and retired projects

differ across our code, process, and quality
metrics? How are the metrics related
pairwise?

Our dataset consists of 5365 monthly snapshots from 218 projects

(across all their incubationmonths). Among the 218 projects, 184 are

graduated and 34 are retired projects. Table 1 shows the descriptive

statistics of our data across all 23 metrics.

In contrast to Yin et al. [52], here we focus on the properties

of the code, process, and code quality metrics. Graduated and re-

tired projects distinguish themselves in several ways. First, one
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Table 1: Descriptive statistics of graduated projects and re-

tired projects. The mean, median and st. deviation values

are computed over all incubation months. Authors are de-

veloperswhomade changes, though they did not necessarily

commit those changes.

184 graduated projects 34 retired projects

mean median st.dev mean median st.dev

SLOC 123431.66 66219.00 200938.97 89866.66 37513.00 145736.58

Commits 50.36 22.00 90.96 11.39 2.00 23.70

Directories 435.19 222.00 583.98 311.33 176.00 316.17

Top Level Directories 10.31 8.00 10.26 9.53 8.00 7.22

Incubation Months 15.98 12.00 13.42 24.71 21.00 17.82

Authors 5.69 3.00 7.88 1.52 1.00 1.96

Major Contributors 2.92 3.00 2.18 1.29 1.00 1.36

Minor Contributors 2.73 0.00 6.73 0.21 0.00 0.85

New Contributors 1.65 0.00 3.72 0.37 0.00 1.03

Files Added 172.45 18.00 807.46 56.27 0.00 432.19

Files Deleted 131.30 3.00 735.82 37.94 0.00 379.24

Files 957.01 609.00 1077.36 807.78 371.00 1227.41

Avg Files Modified per Commit 5.72 3.33 11.78 5.26 1.49 23.14

Active Days 10.64 9.00 8.55 3.83 2.00 5.38

Emails 131.88 63.00 217.79 42.48 16.00 79.04

Corrective 11.60 5.00 18.56 2.47 0.00 5.65

Features 14.07 6.00 25.52 3.27 0.00 7.04

Perfective 23.34 9.00 53.25 5.41 1.00 11.98

Non Functional 0.86 0.00 1.83 0.17 0.00 0.59

Number of functions 3570.97 2350.00 3934.19 2768.23 1384.50 3888.07

Test/Main Lines of Code Percentage 47.43 27.56 126.30 32.87 23.41 36.01

#Functions /w McCabe Index 11-25 81.81 47.00 107.22 52.74 24.00 63.94

#Functions /w McCabe Index >51 2.47 0.00 5.41 0.82 0.00 1.69

Very Large File Size Count 6.89 1.00 21.97 3.40 1.00 4.69

Very Large Function Size Count 17.17 5.00 32.10 9.74 3.00 15.41

Code Duplication Percentage 16.38 12.69 14.92 16.93 13.63 15.69

Most Complex Function LOC 305.67 134.00 1193.30 178.81 120.00 156.75

requirement for graduating from the incubator is to attract new

contributors to the projects. Our data indicates that retired projects

are on average much less likely to attract new contributors during

their incubation period, and have fewer main contributors. Second,

projects have different code and process characteristics. Graduated

projects have more SLOC, but retired have more SLOC per con-

tributor. Similarly for directories. And while retired projects are

smaller in size, they modify on average 5.2 files per commit. Gradu-

ated projects modify on average 5.7 files per commit, but they are

much larger and have more files. Thus, we can argue that retired

projects have a different committing style, a consequence, possibly,

of less stringent rules on how to make changes. Furthermore, re-

tired projects seem to delete significantly fewer files. Third, there

are differences from a code quality perspective. Graduated projects

seem to be more complex, having more large files (>1000 LOC), and

almost twice the average of the number of very large functions

(>100 LOC) when compared to retired projects. Perhaps in line with

that, graduated projects exhibit more test code than retired ones.

RQ1 Summary: Graduated and retired projects differen-

tiate themselves through their code (graduated have less

code per author, and less directories per author), processes

(graduated commit more and delete more), and quality

(graduated have more complex code and more test code).

5.2 RQ
2
: Are project trajectories of graduated

and retired ASFI projects different, along
our code, process, and quality metrics?

We find that the average incubation time over all projects is 18

months, with the average for graduated projects being 16 months,

and for retired projects 24 months. Retired projects stayed on aver-

age 8 months longer in the incubator than graduated projects. We

observe that a number of projects that stay long in the incubator,

still manage to graduate — 28 graduated projects stayed 36 or more

months in the incubator and still graduated, whereas 16 of the 34

retired projects stayed at least 36 months in the incubator. A feasible

reason for this difference is that on average, retired projects may

need longer time to develop, and get the appropriate accommoda-

tion for that. Yin et al. [52] found that while the shorter time spent

in incubation is a characteristic of many graduated projects, that

by itself is not a very good predictor of graduation.
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Figure 2: The number of commit-wise active days per incu-

bation month. An active day is a day that had at least one

commit. On the left are projects incubating for 24 months

or more, on the right projects that spent 24 months or less

in the incubator. For readability reasons, we show only the

first 24 months of data.

On the other hand, projects that stay shorter in the incubator

seem to do so because they are better equipped to graduate from

the start (see Fig. 3, right plot), and even increase their average
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Figure 3: Average number of commits per developer metric.

Left plot shows projects that were in the incubator for more

than 24 months and right plot for projects that spent less 24

months or less in the incubator. For readability reasons, we

show only the first 24 months of data.
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number of commits per developer in the first few incubationmonths.

Figure 2 shows the number of active days in each incubation month.

Retired projects start with only five days of commit activity a month

(for projects incubating <= 24 months), and that decreases towards

no activity after 20 months of incubation. Similarly, retired projects

in projects that are in the incubator for at least 24 months, have

a linear decrease of activity, reaching less than four active days

around month 22 in the incubator, whereas graduated projects tend

to average 8-10 active days per incubation month for longer period

of times. It is clear that graduated projects have a more steady

commit-activity throughout the incubation month, which might

be one of the main factors for a more successful long-term project

development.

graduated

retired

1 3 10

major contributors

graduated

retired

1 3 10 30

minor contributors

graduated

retired

1 3 10 30

new contributors

Figure 4: Major, minor, and new contributors (log-scale) in

graduated and retired projects.

Along commit activity, we want to understand what kind of

contributors contribute to a project. We define three types of con-

tributors: 1) major contributors, those that commit 95% or more of

the total commits; 2) minor contributors, those that contribute less

than 5% of the total commits, and 3) new contributors, those that

are first time contributors (have not contributed before). Figure

4 shows that graduated projects are capable of attracting a few

new contributors, whereas retired projects are less likely to do so.

Analyzing the minor/major contributors throughout the incubation

period, we observe a linear increase for both minor and major con-

tributors in graduated projects, and the opposite in retired projects.

Graduated projects are likely more capable to recruit new develop-

ers and retain existing ones (indicated also by the new contributors

metric). Interestingly, minor contributors seem to be more prevalent

in graduated projects than in retired projects. From a sustainabil-

ity perspective, minor contributors could become committers and

maintainers of the project. Thus, projects and maintainers should

consider attracting and providing guidance to minor contributors

as a way of expanding the project’s community.

Next, we focus on understanding the relationship between devel-

opers and files. We compute the ratio between the number of files

and the number of contributors, which provides us with a measure

of development effort. Figure 5 shows two plots: on the left, we see

the ratio between the number of files and number of contributors,

whereas on the right we see evolution of the codebase size in terms

of SLOC. We observe that retired projects’ size increases in the

first 18 months of the incubation, and the ratio of files/contributors
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Figure 5: Plots showing the ratio between files and number

of developers (left) and the evolution of the code size (right)

for all 218 projects.

increases linearly as well. That means that while retired projects’

codebase is increasing, the number of contributors decreases or

stays the same. In other words, retired projects do not seem to be

able to sustain their development efforts due to fewer contributors.

In the case of graduated projects, we see the ratio of files/developer

also increasing, but being quite lower than those of retired projects.

This indicates that graduated projects, while bigger in size, are

more capable of attracting or retaining developers to cope with the

increase of the codebase’s size.

Projects evolve differently from a process perspective also, lead-

ing to different outcomes. Graduated projects exhibit a higher

number of commits per developer, have more commit active days

throughout the incubation, recruit more new contributors, and are

able to increase and sustain their activity in the first few months

in the incubator. They also communicate more via emails. These

projects have a different approach to working once they enter the

incubator. In projects that incubate for a shorter period of time,

retired projects are less active from the start, and become inactive

(commit-wise) towards month 22 of the incubation period. Projects

that are able to have more commit activity throughout each month,

are more able to keep ongoing the development. Previous work by

Yin et al. [52] showed that the number of commits and the devel-

oper network are correlated with graduation. We further find that

not only the number of commits is relevant, but also how often

and what kind of changes happen. Projects should also keep an

eye on their code quality and complexity, in addition to grooming

long-term and short-term contributors.

Case Study. From the data we collected, we posit that there are

different incubation strategies. Some projects have a a short but

high intensity development period, and therefore they graduate fast.

For example, SpamAssassin spent 7 months in the incubator and

had an average of 173 commits per month from 5.8 contributors.13

Another example is Spark which spent 9 months in the incubator

averaging 272 commits per month from 35 contributors.14 These

were clearly under intense and sustained development.

Other projects strive to keep an ongoing activity despite the

fewer commits and email exchanges. Apache Celix is a framework

13https://github.com/apache/SpamAssassin
14https://github.com/apache/spark
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to develop modular software applications.15 The project incubated

for 45 months, had four contributors and 308 commits. However, for

39 months there was some activity in the project, either via commits

or via emails. The project is still active and under development after

its graduation. An opposite example is Weex,16 a framework for

building Mobile cross-platform high performance UIs. Weex spent

55 months in the incubator and had a very high commit activity

for the first 12 months (>3500 commits). From month 39 to month

55, there was almost no activity (only 35 commits in total) and

developers faced issues in graduating, which ultimately meant that

the project had to be retired. After its retirement, it moved under

alibaba’s open source organization, and continued to be developed.

These projects forged their own path and evolved in different ways.

As such, there is no exact one way a project may go; instead they

need to constantly adapt and adjust based on their current processes,

code, and other socio-technical factors.

RQ2 Summary: Graduated and retired projects follow

different trajectories once they enter the incubator. Some

projects are better equipped to graduate fast, while others

strive for a more constant but less commit-heavy activity.

Finally, retired projects are more likely to have a higher

burden per contributor due to having fewer contributors,

an increasing codebase size, and being less likely to attract

new contributors.

5.3 RQ
3
: What are the code, process, and

quality metrics determinants of whether a
project is graduated versus retired? Are
they different for different programming
languages?

In the previous RQs we examined metrics pairwise and in rela-

tionship to ASF sustainability. To study the relationship between

sustainability and code quality, in the presence of multiple other

metrics, we use generalized linear and mixed effects logistic models.

We have 25 different programming languages in our data set, with

a large spread of the number of projects using a specific language,

from 160 projects in Java to 1 project using CVX. As Java is the pre-

dominant programming language used by ASF incubator projects,

we first provide insights from projects that use Java as the primary

programming language, and then we compare the models built on

only Java projects to models on all projects programming languages

in the ASF incubator. In the following we present those two studies.

Java Projects. The results of the first study, on all Java projects

are shown in Table 2. The three regression models are predicting

the binary outcome of graduation or retirement, the first using base

(code) metrics, the second adds process metrics to the base, and the

third is the full model, with all code, process, and quality metrics.

This allows us to understand the contribution of the different met-

rics groups to the efficacy of the models. We will use the full model

for explaining the details.

In code metrics, as expected, more SLOC increases the odds of

graduation by 15%. The top level directory number is interesting

15https://github.com/apache/celix
16https://github.com/apache/incubator-weex

as it is significant and negative, implying 21% lower odds. This

is consistent with the notion that less complex code is easier to

maintain and thus needs fewer people. As a control, having a higher

value for the incubation month decreases graduation substantially

(41% lower odds), as discussed earlier in RQ2.

In process metrics, major contributors is positively and signif-

icantly associated with graduation, yielding 84% increased odds;

that is, having more major contributors that contribute 95% or more

of the total commits, the more likely it is to graduate (i.e., to be-

come ASF sustainable). The effect of minor contributors is small

(5% increase in odds) but significant. Prior work has shown they are

valuable. They often pick low hanging fruit issues to fix, or work

on the code for their own needs. In the long term, some of those

minor contributors are given commit access and the possibility to

join the project, enabling a project’s long-term sustainability.

Code usually evolves through different kind of changes, includ-

ing adding files, removing files, fixing bugs, adding new features,

creating documentation or performing re-factorings. We use the

number of added files and the number of deleted files to simulate

the dynamics of the code evolution from a file organization per-

spective. The model shows that there is a small negative effect

(3% decrease in odds) and borderline significant for projects that

delete more files during their incubation period. Moreover, we find

that the average number of files modified per commit has a sig-

nificant negative effect on graduation, lowering the odds by 6%.

Ideal changes should of course be small and well documented in

a commit. When the code is complex with many dependencies,

as is the case with graduated projects on average, it is likely that

more files would have to be modified per commit. This could be

attributed to code dependencies, less scrutiny over how to commit

changes, or developers experimenting more with the code.

We also find that two types of commit changes are associated

with graduation: corrective commits, which fix bugs and issues, and

feature commits, which that add new features, have a significant

positive effect on graduation, each adding 7-8% to the odds.

In code quality metrics, first, having a higher number of files

with more than 1KLOC has a sizeable negative effect (19% drop

in the odds) associated with graduation. One possible reason for

this is the fact that large files are more difficult to maintain and

test, and to collaborate on. On the other hand, projects that have a

higher number of functions of very large size (>100LOC) are more

likely to be self-sustainable, by almost the same odds difference.

This is somewhat surprising and merits further study. Given the

verbosity of the Java language, we would expect that simply having

more functions (modularity) of reasonable sizes is important, from

the maintenance, program comprehension (readability), and testing

perspective. While sometimes code clones are not considered harm-

ful [22], many other times cloned code leads to more maintenance

effort due to the need of fixing the code in multiple places. The

model shows that the more duplicated code a project has, the less

likely it is to graduate. Finally, and surprisingly test LOC/code LOC

does not appear to be significant for sustainability.

All Projects. We performed a second study on all projects after

excluding nine projects that solely use a certain language (i.e., we

eliminate projects whose dominant coding language is only used

by them). There we used a generalized linear mixed effect model,

with programming language as the random effect. The results are

502

https://github.com/apache/celix
https://github.com/apache/incubator-weex


Code, �ality, and Process Metrics in Graduated and Retired ASFI Projects ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Table 2: Summary of threeGLMmodels for Java-based projects. Due to code and directories being highly correlated, we removed

the directories variable. Similarly, we removed themost complex function LOC variable.

Base Base, Processes Base, Processes, Quality

Predictors Odds Ratios p Odds Ratios p Odds Ratios p

Intercept 0.83 0.378 3.49 <0.001 1.85 0.120

SLOC 1.22 <0.001 1.11 0.001 1.15 0.004

#Top Level Directories 0.79 <0.001 0.80 <0.001 0.79 0.001

Incubation Month 0.48 <0.001 0.63 <0.001 0.59 <0.001

#Major Contributors 1.82 <0.001 1.84 <0.001

#Minor Contributors 1.06 0.012 1.05 0.022

#New Contributors 0.97 0.151 0.98 0.227

#Files Added 1.02 0.372 1.02 0.245

#Files Deleted 0.96 0.010 0.97 0.047

Avg. Files Modified per Commit 0.95 0.016 0.94 0.004

#Emails 0.96 0.011 0.96 0.052

#Corrective 1.08 <0.001 1.07 0.001

#Features 1.08 <0.001 1.08 <0.001

#Perfective 1.00 0.963 0.98 0.453

#Non Functional 0.99 0.557 0.99 0.757

Test/Main Lines of Code Percentage 1.01 0.713

#Functions /w McCabe Index 11-25 1.10 0.002

#Functions /w McCabe Index >51 1.01 0.408

Very Large File Size Count 0.81 <0.001

Very Large Function Size Count 1.18 <0.001

Code Duplication Percentage 0.85 <0.001

Observations 3795 3795 3795

R2 Tjur 0.116 0.185 0.239

shown in Table 3. The random effect assumes a large portion of the

variance in the full model (84.4% conditional vs. 15.4% marginal) as

expected due to the oversized importance of programming language

choice on all aspect of code, process, and quality.

We note that the results are qualitatively very similar as the

results on only Java projects. This is not unexpected since 76% of

the projects are Java projects, and thus the properties of the Java

projects carry over. Still, the remaining projects do show significant

congruence with Table 2. It did occur to us to contrast our metrics

between functional and imperative languages. Unfortunately we

did not have enough examples of projects using the former in order

to fit a model successfully.

RQ3 Summary: We find that an increase in the follow-

ing increases the odds of graduation: lines of code, major

and minor contributors, features commits, corrective com-

mits, medium complexity (11-25 McCabe) functions, and

very large functions. On the flip side, the increase in the

following decreases the odds: top level directories, avg.

files modified per commit, very large file sizes, and code

duplication percentage.

6 DISCUSSION

We start with a caveat about regression and causality. When models

are well fitted and confounds are accounted for, multiple regres-

sion can quantify directional effects (e.g., variable x on variable y)

and thus, methodologically go beyond mere symmetric correlation.

Hence the standard language used: "the effect of changing variable

x is that variable y will change", etc. However, this is not to imply

any strict causality relationship, temporal or otherwise. Moreover,

quasi-experimental studies like ours that do not rely on randomized

group assignment have in general lower discovery power than well

designed randomized trials [27].

We found that the coefficients of some code quality and process

measures are consistent across different projects, while some oth-

ers are not. E.g., the number of major contributors are positively

associated with project sustainability. It suggests that increased

number of champions in technical contributions is a signal for

project sustainability. As for the design implication, we suggest

that OSS maintainers should help create a positive feedback loop for

all contributors, giving more ownership and responsibility, while

at the same time offering the flexibility to choose what features

to work on, and contribute to the project’s long-term vision [12].

We also find that the number of corrective commits are positive

across projects, suggesting that the presence of explicit corrective

message contained in commits may aid project sustainability. Such
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Table 3: Summary of three GLMM models for all projects. The marginal R2 is much smaller than for the Java-based models.

Base Base, Processes Base, Processes, Quality

Predictors Odds Ratios p Odds Ratios p Odds Ratios p

Intercept 0.69 0.491 21.31 <0.001 60.25 <0.001

SLOC 1.21 <0.001 0.93 0.129 0.98 0.759

#Directories 1.27 <0.001 1.22 0.002 1.15 0.045

#Top Level Directories 0.67 <0.001 0.63 <0.001 0.65 <0.001

Incubation Month 0.53 <0.001 0.73 <0.001 0.70 <0.001

#Major Contributors 2.15 <0.001 2.21 <0.001

#Minor Contributors 1.09 <0.001 1.09 <0.001

#New Contributors 0.98 0.269 0.98 0.264

#Files Added 1.00 0.764 1.01 0.675

#Files Deleted 0.96 0.001 0.96 0.003

Avg. Files Modified per Commit 0.93 0.001 0.92 <0.001

Active Days 1.35 0.015 1.30 0.036

#Emails 0.97 0.078 0.98 0.179

#Corrective 1.06 0.001 1.05 0.005

#Features 1.06 <0.001 1.06 <0.001

#Perfective 1.00 0.969 1.00 0.903

#Non Functional 1.03 0.138 1.03 0.159

Test/Main Lines of Code Percentage 1.04 0.079

#Functions /w McCabe Index 11-25 1.01 0.772

#Functions /w McCabe Index >51 1.01 0.446

Very Large File Size Count 0.90 <0.001

Very Large Function Size Count 1.19 <0.001

Code Duplication Percentage 0.87 0.004

Most Complex Function LOC 0.73 <0.001

Observations 4970 4970 4970

Marginal R2 / Conditional R2 0.097 / 0.539 0.213 / 0.689 0.154 / 0.844

result suggests corrective messages do not make the project look

bad, they may instead signal a green light on the sustainability of

the project: corrections are encouraged. Moreover, we found the

average file modified per commit, among all process measures, has

the most negative effect on project’s sustainability. Along with the

evidence that the number of files that contain more than 1000 LOC,

and the function complexity being negative, we suggest that a com-

mit should only contain the files that are required for that specific

change, and to consider modularizing and refactoring large files

and complex functions to reduce maintenance and development

costs [3, 11, 35].

The fact that code duplication is negatively associated with sus-

tainability makes sense: duplicated code is a pain to maintain and

gives rise to technical debt [13, 26, 45]. Checking for duplicated code

and specifically assigning resources to refactor such code clones

should be prioritized at different stages throughout the project’s

evolution. If possible at all, avoiding the practice is good advice

that will lower the maintenance efforts later on.

Wewere surprised to find that the number of very large functions

increases the odds of graduation as very large functions are difficult

to maintain. This can benefit from further study.

7 THREATS TO VALIDITY

Internal Validity. Collecting code quality data on projects involv-

ing a large number of different programming languages is difficult.

Although we found no evidence of this in spite of spot checking,

one internal threat to our study remains: that the Sokrates tool

may not correctly collect and compute different metrics (e.g., com-

plexity metrics are not computed uniformly across programming

languages, due to the intricate differences between them). Like-

wise, the commit classifier might not be as accurate on our commit

dataset as in the original study [15], even though it was trained on

more than 5,000 commits yielding good accuracy. This is acceptable

for our scope, as finding the best commit classifier is out of scope

for this work. In our modeling we use the programming language

as a random effect to control for any effects introduced by the

programming language. While most of the projects have sufficient

recorded data (e.g., commits), some repositories had no history

(e.g., Guacamole), were an umbrella project for several projects

(MyFaces), or had too few observations to make any meaningful

conclusions. Thus, we excluded such projects and also eliminated

those projects that have the majority of code written in Lua, Go,

Erlang, CSS, C#, Kotlin, Autoconf due to being too few projects that

use these languages, and thus having very few observations.
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External validity. We carefully validated our hypotheses and

answered our research questions based on the ASF Incubator data.

Generalization beyond ASF projects might be difficult, due to the

specific frame in which ASF incubating projects evolve. Any further

generalization to projects beyond ASF must be made with care. Our

aim was to provide evidence that these systems require complex

analysis involving multiple perspectives, including the source code

and the processes.

8 CONCLUSION

Motivated by prior work on OSS success, health, and sustainability,

and driven by contingency theory, we hypothesized that there is

a link between project graduation and code, process, and quality

metrics of software in ASF incubator projects. In this paper, we

presented the first study known to us associating code, process and

quality with OSS sustainability. We find that while retired projects

have a slightly higher cyclomatic complexity when adjusted for

project size, their retirement does not seem to be associated with

bugs, complexity or technical debt. We find that both major con-

tributors and minor contributors (though less significant) play a

positive role in increasing the sustainability of OSS projects. Among

the process and quality factors, the file size, function size, function

complexity seem to be most negative, suggesting keeping workflow

simple and concise is of importance to sustainability.We consolidate

those findings into takeaways for practitioners. Thinking ahead, we

hope to generalize our model to projects outside Apache Software

Foundation and develop tools for instrumenting general GitHub

projects to help them on the trajectories to sustainability.
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